Terahertz and infrared spectroscopy of gated large-area graphene.

نویسندگان

  • Lei Ren
  • Qi Zhang
  • Jun Yao
  • Zhengzong Sun
  • Ryosuke Kaneko
  • Zheng Yan
  • Sébastien Nanot
  • Zhong Jin
  • Iwao Kawayama
  • Masayoshi Tonouchi
  • James M Tour
  • Junichiro Kono
چکیده

We have fabricated a centimeter-size single-layer graphene device with a gate electrode, which can modulate the transmission of terahertz and infrared waves. Using time-domain terahertz spectroscopy and Fourier-transform infrared spectroscopy in a wide frequency range (10-10 000 cm(-1)), we measured the dynamic conductivity change induced by electrical gating and thermal annealing. Both methods were able to effectively tune the Fermi energy, E(F), which in turn modified the Drude-like intraband absorption in the terahertz as well as the "2E(F) onset" for interband absorption in the mid-infrared. These results not only provide fundamental insight into the electromagnetic response of Dirac fermions in graphene but also demonstrate the key functionalities of large-area graphene devices that are desired for components in terahertz and infrared optoelectronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials

Low-dimensional carbon nanostructures, such as single-wall carbon nanotubes (SWCNTs) and graphene, offer new opportunities for terahertz science and technology. Being zero-gap systems with a linear, photon-like energy dispersion, metallic SWCNTs and graphene exhibit a variety of extraordinary properties. Their DC and linear electrical properties have been extensively studied in the last decade,...

متن کامل

Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene

Two-dimensional (2D) graphene emerged as an outstanding material for plasmonic and photonic applications due to its charge-density tunability, high electron mobility, optical transparency and mechanical flexibility. Recently, novel fabrication processes have realised a three-dimensional (3D) nanoporous configuration of high-quality monolayer graphene which provides a third dimension to this mat...

متن کامل

Abstract Submitted for the MAR13 Meeting of The American Physical Society Terahertz and mid-infrared reflectance of epitaxial graphene

Submitted for the MAR13 Meeting of The American Physical Society Terahertz and mid-infrared reflectance of epitaxial graphene CRISTIANE N. SANTOS, BENOIT HACKENS, IMCN/NAPS, Université catholique de Louvain, Belgium, FRÉDÉRIC JOUCKEN, ROBERT SPORKEN, LPME, Université de Namur (FUNDP), 5000 Namur, Belgium, JESSICA CAMPOS DELGADO, JEAN-PIERRE RASKIN, ICTM/ELEN, Université catholique de Louvain (U...

متن کامل

Graphene plasmonics for terahertz to mid-infrared applications.

In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphene's unique electrical and optical properties, tunability, long-lived collective excitation and its extreme light confinement. Here, we review the basic properties of graphene plasmons: their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping p...

متن کامل

Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime.

We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude higher than the universal conductance of sigma(0) = e(2)/4variant Planck's over 2pi observed in graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2012